Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Guo-Yi Bai,^a* Hong-Wei Peng,^a Jim Simpson,^b Yong Chen^c and Ying Li^d

^aCollege of Chemistry and Environmental Science, Hebei University, Hebei 071002, People's Republic of China, ^bDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand, ^cDepartment of Stomatology, Cangzhou Central Hospital, Hebei 061001, People's Republic of China, and ^dDepartment of Geriatrics, Cangzhou Central Hospital, Hebei 061001, People's Republic of China

Correspondence e-mail: baiguoyi@hotmail.com

Key indicators

Single-crystal X-ray study T = 294 K Mean σ (C–C) = 0.005 Å R factor = 0.042 wR factor = 0.091 Data-to-parameter ratio = 13.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Diphenylmethyl 3-azido-1,1-dioxocephalosporanate

The title compound, $C_{21}H_{20}N_4O_5S$, crystallizes with two molecules in the asymmetric unit. The crystal structure is stabilized by a network of $C-H\cdots O$ hydrogen bonds.

Received 14 November 2006 Accepted 15 November 2006

Comment

Tazobactam is a widely used beta-lactamase inhibitor (Bai *et al.*, 2001, Micetich *et al.*, 1987). The title compound, (I), is a byproduct of the synthesis of tazobactam and the structure of its benzene solvate has been reported (Liu, 2006). The unsolvated material, (I), was obtained from 6-aminopenicillanic acid, and its structure is reported here (Figs. 1 and 2).

Compound (I) crystallizes with two independent, but structurally quite similar, molecules in the asymmetric unit. All bond lengths and angles in (I) are within normal ranges (Allen *et al.*, 1987) and similar to those reported for the solvated material (Liu, 2006). The four-membered azetedinone rings are planar (r.m.s. deviations 0.0246 and 0.0249 Å). The thiazine rings adopt chair conformations. The C1/O1/O2/C14/C15 and C22/O6/O7/C35/C36 carboxylate units are also planar (r.m.s. deviations 0.0232 and 0.0383 Å, respectively) and lie approximately orthogonal to the respective thiazine rings. The crystal structure is stabilized by a network of intermolecular C–H···O hydrogen bonds (Fig. 3 and Table 1).

Experimental

The title compound was prepared by the procedure of Bai *et al.* (2001). Colourless single crystals of (I) were grown by slow evaporation of a methanol solution.

Crystal data $C_{21}H_{20}N_4O_5S$ $M_r = 440.47$ Orthorhombic, $P_{21}^2 2_1 2_1$ a = 10.9030 (13) Å b = 11.3796 (14) Å c = 34.293 (4) Å V = 4254.8 (9) Å³

Z = 8 D_x = 1.375 Mg m⁻³ Mo K α radiation μ = 0.19 mm⁻¹ T = 294 (2) K Block, colourless 0.24 × 0.22 × 0.18 mm

© 2006 International Union of Crystallography All rights reserved

Figure 1

One of the two molecules (molecule 1) in the asymmetric unit of (I), with the atom-numbering scheme and 30% probability displacement ellipsoids.

Figure 2

The other molecule (molecule 2) in the asymmetric unit of (I), with the atom-numbering scheme and 30% probability displacement ellipsoids.

Figure 3

Packing diagram for (I), with hydrogen bonds drawn as dashed lines.

Data collection

Bruker SMART-1000 CCD areadetector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996)

(3ADAB3, Shednek, 1990) $T_{\rm min} = 0.943, T_{\rm max} = 0.966$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.092$ S = 1.037497 reflections 561 parameters H-atom parameters constrained 20301 measured reflections 7497 independent reflections 5529 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.037$ $\theta_{\text{max}} = 25.0^{\circ}$

Table 1Hydrogen-bond geometry (Å, °).

$D-\mathrm{H}\cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$C19-H19B\cdots O3^{i}$	0.97	2.44	3.364 (3)	160
C31-H31···O9 ⁱⁱ	0.93	2.57	3.446 (6)	157
C36−H36···O10 ⁱⁱⁱ	0.98	2.25	3.196 (4)	162
$C40 - H40B \cdots O8^{iv}$	0.97	2.29	3.235 (4)	166
$C18-H18\cdots O7^{ii}$	0.98	2.50	3.262 (3)	135

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{5}{2}, -z + 2$; (ii) x, y + 1, z; (iii) $-x + 1, y + \frac{1}{2}, -z + \frac{3}{2}$; (iv) $-x + 1, y - \frac{1}{2}, -z + \frac{3}{2}$.

All H atoms were positioned geometrically and refined using a riding model, with C-H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic, C-H = 0.98 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for CH, C-H = 0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for CH₂, and C-H = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for CH₃ H atoms.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

Financial support by the Science Project of the Hebei Education Department (grant No. 2005350) and the Science Foundation of Hebei University (grant No. 2005046) is gratefully acknowledged.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. Bai, G. Y., Chen, L. G., Li, Y. & Cao, L. (2001). Fine Chem. 18, 634-637.

Bruker (1997). *SMART* (Version 5.01), *SAINT* (Version 5.01) and *SHELXTL* (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Liu, X.-L. (2006). Acta Cryst. E62, 04431-04432.

Micetich, R. G., Maiti, S. N., Spevak, P., Hall, T. W., Yamabe, S., Ishida N., Tanaka, M., Yamazaki, T., Nakai A. & Ogawa, K. (1987). J. Med. Chem. 30, 1469–1474.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.