Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Guo-Yi Bai, ${ }^{\text {a* }}$ Hong-Wei Peng, ${ }^{\text {a }}$ Jim Simpson, ${ }^{\text {b }}$ Yong Chen ${ }^{\text {c }}$ and Ying Li $^{\text {d }}$
${ }^{\text {a }}$ College of Chemistry and Environmental Science, Hebei University, Hebei 071002, People's Republic of China, ${ }^{\text {b }}$ Department of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand, ${ }^{\text {c Department of }}$ Stomatology, Cangzhou Central Hospital, Hebei 061001, People's Republic of China, and ${ }^{\text {d Department of Geriatrics, Cangzhou Central }}$ Hospital, Hebei 061001, People's Republic of China

Correspondence e-mail: baiguoyi@hotmail.com

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.042$
$w R$ factor $=0.091$
Data-to-parameter ratio $=13.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Diphenylmethyl 3-azido-1,1-dioxocephalosporanate

The title compound, $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}$, crystallizes with two molecules in the asymmetric unit. The crystal structure is stabilized by a network of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

Tazobactam is a widely used beta-lactamase inhibitor (Bai et al., 2001, Micetich et al., 1987). The title compound, (I), is a byproduct of the synthesis of tazobactam and the structure of its benzene solvate has been reported (Liu, 2006). The unsolvated material, (I), was obtained from 6-aminopenicillanic acid, and its structure is reported here (Figs. 1 and 2).

Compound (I) crystallizes with two independent, but structurally quite similar, molecules in the asymmetric unit. All bond lengths and angles in (I) are within normal ranges (Allen et al., 1987) and similar to those reported for the solvated material (Liu, 2006). The four-membered azetedinone rings are planar (r.m.s. deviations 0.0246 and $0.0249 \AA$). The thiazine rings adopt chair conformations. The C1/O1/O2/ $\mathrm{C} 14 / \mathrm{C} 15$ and C22/O6/O7/C35/C36 carboxylate units are also planar (r.m.s. deviations 0.0232 and $0.0383 \AA$, respectively) and lie approximately orthogonal to the respective thiazine rings. The crystal structure is stabilized by a network of intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Fig. 3 and Table 1).

Experimental

The title compound was prepared by the procedure of Bai et al. (2001). Colourless single crystals of (I) were grown by slow evaporation of a methanol solution.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S} \\
& M_{r}=440.47 \\
& \text { Orthorhombic, } P 2_{1} 2_{1} 2_{1} \\
& a=10.9030(13) \AA \\
& b=11.3796(14) \AA \\
& c=34.293(4) \AA \\
& V=4254.8(9) \AA^{3}
\end{aligned}
$$

Received 14 November 2006 Accepted 15 November 2006

$$
Z=8
$$

Figure 1
One of the two molecules (molecule 1) in the asymmetric unit of (I), with the atom-numbering scheme and 30% probability displacement ellipsoids.

Figure 2
The other molecule (molecule 2) in the asymmetric unit of (I), with the atom-numbering scheme and 30% probability displacement ellipsoids.

Figure 3
Packing diagram for (I), with hydrogen bonds drawn as dashed lines.

Data collection

Bruker SMART-1000 CCD areadetector diffractometer φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.943, T_{\text {max }}=0.966$

20301 measured reflections 7497 independent reflections 5529 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.037$
$\theta_{\text {max }}=25.0^{\circ}$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0408 P)^{2}\right. \\
& +0.1929 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.20 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\text {min }}=-0.25 \mathrm{e} \mathrm{~A}^{-3} \\
& \text { Absolute structure: Flack (1983), } \\
& 2607 \text { Friedel pairs } \\
& \text { Flack parameter: } 0.04 \text { (6) }
\end{aligned}
$$

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 19-\mathrm{H} 19 \mathrm{~B} \cdots \mathrm{O}^{\text {i }}$	0.97	2.44	3.364 (3)	160
$\mathrm{C} 31-\mathrm{H} 31 \cdots \mathrm{O}{ }^{\text {ii }}$	0.93	2.57	3.446 (6)	157
C36-H36 \cdots O10 ${ }^{\text {iii }}$	0.98	2.25	3.196 (4)	162
$\mathrm{C} 40-\mathrm{H} 40 \mathrm{~B} \cdots \mathrm{O}^{\text {iv }}$	0.97	2.29	3.235 (4)	166
$\mathrm{C} 18-\mathrm{H} 18 \cdots \mathrm{O} 7^{\text {ii }}$	0.98	2.50	3.262 (3)	135

Symmetry codes: (i) $x+\frac{1}{2},-y+\frac{5}{2},-z+2$; (ii) $x, y+1, z$; (iii) $-x+1, y+\frac{1}{2},-z+\frac{3}{2}$; (iv) $-x+1, y-\frac{1}{2},-z+\frac{3}{2}$.

All H atoms were positioned geometrically and refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for aromatic, $\mathrm{C}-\mathrm{H}=0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for $\mathrm{CH}, \mathrm{C}-\mathrm{H}=$ $0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for CH_{2}, and $\mathrm{C}-\mathrm{H}=0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for $\mathrm{CH}_{3} \mathrm{H}$ atoms.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

organic papers

Financial support by the Science Project of the Hebei Education Department (grant No. 2005350) and the Science Foundation of Hebei University (grant No. 2005046) is gratefully acknowledged.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bai, G. Y., Chen, L. G., Li, Y. \& Cao, L. (2001). Fine Chem. 18, 634-637.
Bruker (1997). SMART (Version 5.01), SAINT (Version 5.01) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Liu, X.-L. (2006). Acta Cryst. E62, o4431-o4432
Micetich, R. G., Maiti, S. N., Spevak, P., Hall, T. W., Yamabe, S., Ishida N., Tanaka, M., Yamazaki, T., Nakai A. \& Ogawa, K. (1987). J. Med. Chem. 30, 1469-1474.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

